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Example of a chaotic crystal: The labyrinth
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Labyrinthine structures often appear as the final steady state of pattern forming systems. Being disordered,
they exhibit the same kind of short range positional order as the Newell-Pomeau turbulent crystal. Labyrinths
can be seen as a limit case of the texture of disordered rolls with a coherence length of the same order as the
wavelength. In the various two-dimensional model equations we looked at, labyrinths and parallel rolls are
steady states for the same parameters, their occurrence depending on the initial conditions. Comparing the
stability of these two structures, we find that in variational models their energy is very close, rolls always being
more stable than labyrinths. For the nonvariational model we propose a numerical experiment which displays
a well defined bifurcation from parallel rolls to labyrinths as the more stable state.

DOI: 10.1103/PhysRevE.66.026203 PACS number~s!: 05.45.2a, 42.65.2k, 47.54.1r
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I. INTRODUCTION

In nature, as in artificial systems, there is a wide variety
stationary patterns, from perfectly well ordered crystals
nonequilibrium patterns like Rayleigh-Be´nard rolls and
Bénard-Marangoni hexagons, to stationary ‘‘chaotic’’ stru
tures without long range order like glasses for instance.
present paper is devoted to one particular instance of ‘‘p
tern forming’’ equations that show both regular rolls and ch
otic patterns as the final steady state. We attempt to un
stand this double possibility by using various methods, b
analytical and numerical. A difficulty in this endeavour is t
scarcity of hard analytical results on ‘‘chaotic’’ patterns. A
early work by Newell and Pomeau@1# discussed the poss
bility of a chaotic ground state at threshold involving a lar
number of modes, named aturbulent crystal. They proposed
a gradient system model whose ground state is

w~r !5
1

AN
(
j 51

2N

Aj expik j•r , ~1!

where uk j u'kc , Aj5uAuexp(ifj) with independent random
phasesf j uniformly distributed in$0, 2p%. Such a structure
displays chaotic behavior and short range positional or
@see Fig. 1~a!#. The modes are distributed in Fourier spa
like the spatial spectrum of a polycrystalline sample result
from grinding of a crystalline material into a powder, as
Fig. 1~d!.

On the other hand, chaotic structures which are spati
stationary on average have been observed below the inst
ity threshold in the presence of a continuous noise@2#, or as
a fluctuating ‘‘quantum image’’@3# due to quantum noise
They are also commonly observed in numerical simulati
above threshold, when starting from random initial con
tions, in the linear stage before the nonlinearity comes i
play and brings the system to its final state. To the best of
1063-651X/2002/66~2!/026203~8!/$20.00 66 0262
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knowledge, no turbulent crystal has been reported as the
stage of evolution of a system without external sustain
noise.

Below we study another case of two-dimensional chao
state, the labyrinths@Fig. 1~c!#, which also display short
range order and a powderlike spectrum@Fig. 1~d!#. Labyrin-
thine structures have been observed in many situations, a

FIG. 1. ~a! Newell-Pomeau turbulent crystal.~b! Domains of
rolls in the transient state.~c! Stable labyrinths.~d! Spatial spectrum
of ~c!. ~b!–~d! correspond to the DOPO case, Eqs.~9! and~10!, with
a grid of 102431024 points, and 16 points per critical signal wav
length.
©2002 The American Physical Society03-1
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magnetic films@4#, in chemical reactions@5#, and in vibrated
sand@6#. Labyrinths also appear from random initial cond
tions as solutions of the forced Ginzburg-Landau equa
@7#, of reaction-diffusion models@8#, and of optical models
@9,10#, always without external noise. While these chao
states are formed in many situations, no statistical appro
has been proposed to account for their properties, and
bifurcation leading to labyrinths has not been consider
There is even some confusion concerning their definiti
labyrinths being sometimes named rolls@11,12#.

From now on the labelturbulent crystalwill be restricted
to the structures predicted by Newell and Pomeau@described
by Eq. ~1! with large N#, labyrinths to structures as in Fig
1~c! already reported in the literature, andchaotic crystalsto
any structure without long range order, but spatially stati
cally homogeneous.

A statistical approach is first used to characterize the la
rinths, and we point out to what extent they are like or n
like the Newell-Pomeau turbulent crystals. Four differe
model equations are considered that display similar feat
when starting from random initial conditions. Rolls a
formed at the threshold of instability, followed by labyrinth
as the control parameter increases. On the other hand
parameter values where labyrinths appear, using parallel
as initial conditions, stable rolls remain forever. Our seco
aim is to find if a bifurcation rolls→ labyrinths exists in these
systems, i.e., if the labyrinth becomes the ‘‘ground sta
above a certain threshold.

For the three variational models considered here, i.e.
type] tw52dF/dw* wherew* is the complex conjugate o
w if w is complex, the ground state is the one minimizing t
Euler-Lagrange functionalF(w,w* ), also named the ‘‘po-
tential’’ or ‘‘energy.’’ In these cases, rolls are found to b
more stable than labyrinths, the energy density of the
structures becoming closer and closer as the control pa
eter increases. In contrast, in the model of the degene
optical parametric oscillator~DOPO!, without variational
structure, a numerical experiment shows a clear bifurca
from rolls to labyrinths as the ‘‘preferred’’ pattern.

The four model equations for our study are presented
Sec. II. In Sec. III the labyrinths are shown to be main
described in terms of a single local wave vector. This ma
them differ sharply from the Newell-Pomeau turbulent cry
tals involving locally an infinite number of Fourier modes.
Sec. III we compare the stability of rolls and labyrinths in t
four model equations.

II. MODEL EQUATIONS

The simplest model considered here is the gradient-t
Swift-Hohenberg~SH! equation for the real valued order p
rameterw(r ,t),

] tw5mw2~¹211!2w2w3, ~2!

where¹25]x
21]y

2 is the Laplacian andm the control param-
eter. The zero solution destabilizes atmmod50 into a roll
pattern with wave numberk51. A nontrivial constant solu-
02620
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tion exists form.1, which is modulationally unstable fo
m,1.5. The energy density for a surfaceS is

F$w%5
1

S E
S
dr F2

m

2
w22

1

4
w42

1

2
$~¹211!2w%2G .

~3!

In numerical simulations of Eq.~2!, starting from random
initial conditions, it seems at first that the final states exh
a continuous transition from rolls to labyrinths asm increases
from zero. Indeed the patterns obtained at a given time h
an increasing number of defects; they are composed of
mains of rolls with decreasing size, which become frozen
m*1.5, looking like an ensemble of portions of a sing
curved roll or labyrinth. All these structures~either domains
of rolls or labyrinths! display a powerlike spatial Fourie
spectrum around the critical circle@qualitatively as in Fig.
1~d!#. The labyrinths disappear form*5.7 to the benefit of
the constant solution~eventually with localized structure
@11#!.

We have also considered two other variational models,
quintic SH equation

] tA5mA2~¹211!2A1A320.25A5, ~4!

chosen because of its subcritical character, and also a sy
of two coupled SH equations inspired by Newell a
Pomeau@1#,

] tw5mw2~¹211!2w2w322r euw2gww5, ~5!

] tu52e2u2~¹21q2!2u2r ew22guu3. ~6!

Reference@1# suggests an Euler-Lagrange functional for
active mode~w!, coupled to a set of passive modes (un),
each with appropriate parameters (qn ,en ,r n), which could
lead to a ground state of a turbulent crystal with a lar
number of modes. We investigate a model with a single p
sive mode. For small values of the coupling coefficientr e
where a weakly nonlinear analysis has been performed,
model in Eqs.~5!, ~6! cannot lead to a chaotic ground sta
@13#. But for large coupling (r e>5), this model displays
subcritical rolls and labyrinths.

Finally, we study a nonvariational model for the DOP
with thex (2) crystal filling the whole length of a ring cavity
For the values of the parameters used below, it has b
shown@10,14# that diffraction and nonlinearities can be d
coupled. Therefore the complex amplitudesa0,1(t,r ,z) of the
pump and signal fields obey the following boundary con
tions which couple the fields at the cell entrance (z50) and
exit (z5 l ):

a0~ t1t,0!5a0,in1Reiu01 i ,¹2/2k0a0~ t,, !,

a1~ t1t,0!5Reiu11 i ,¹2k0a1~ t,, !. ~9!

In Eqs. ~9! the transverse r dependence has bee
dropped. t is the round trip time of the light inside th
cavity, a0,in is the input pump amplitude~taken as control
parameter!, , is the cell length,R is the total reflectivity of
3-2
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EXAMPLE OF A CHAOTIC CRYSTAL: THE LABYRINTH PHYSICAL REVIEW E66, 026203 ~2002!
the plane mirrors,u0,1 are the cavity mistunings for the tw
fields, andk0 the longitudinal wave number, all real quan
ties. The field amplitudesa0,1(t,,) at the exit of the
x (2)-type medium are approximated by a second order
pansion:

a0~, !5a0~0!1 i ,a1
2~0!2,2a0~0!ua1

2~0!u,

a1~, !5a1~0!1 i ,a0~0!a1* ~0! ~10!

1
,2

2
a1~0!@ ua0

2~0!u2ua1
2~0!u# ,

when the variables (t,r ) inside the parentheses are droppe
We used the parameter valuesR50.9, u052u150.2. For
a0,in50.0226 a signal field emerges with an unstable wa
numberkc given by the relationkc

2,/k05Au1. With random
initial conditions, when increasing the control parameter,
transverse profile of the signal field~either the real part or the
imaginary part ofa1! has the same appearance as the s
tions of the SH equation~2!, i.e., domains of rolls are forme
close to threshold@cf. Fig. 1~b! for a0,in50.0245# and then
labyrinths @Fig. 1~c!, a0,in50.030# until the homogeneous
solution emerges (a0,in50.032).

III. STATISTICAL PROPERTIES OF LABYRINTHS

The Newell-Pomeau turbulent crystal, Fig. 1~a!, clearly
differs from the structures shown in Figs. 1~b!–1~c!, while
they all display similar spectra. As the three structures
chaotic, it is natural to use a statistical approach to help
understand the differences between them. The ensemble
erages noted below by angular brackets are numerically c
puted by spatial averaging. We show here that labyrinths
locally periodic solutions, i.e.,textures, in the limit of short
range positional order. A texture can be written as

w~r !;A expif~r !1c.c.;A expik~r !•r1c.c., ~11!

with a local wave vectork(r )5“f(r ), and an amplitudeA
supposed to vary slowly with respect to the phase. Ma
works have studied textures, since they appear preferent
to rolls in convection boxes@15#. These studies were pe
formed under the hypothesis“k!k2, which allows deriva-
tion of an equation for the local wave vectork(r ), since the
behavior ofk near singularities of the phase field@16# is
algebraically slaved to the wave numberk. The relative sta-
bility of these complex structures with respect to regu
ones has been discussed by Cross@17#.

Labyrinths can certainly not be described as roll doma
with a slowly varying amplitude and orientation, because
local orientation of the nodal lines of the field changes w
a typical length scale of the order of the wavelength, so t
they are fundamentally disordered. However, one can de
a field of wave vectorsk(r ) almost everywhere. To know th
local orientation and magnitude ofk(r ), one can either draw
the curves orthogonal to the nodal lines and then interpo
at each point of the grid@18,19#, or use a local Fourier trans
02620
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form @20#. As shown below, the notion of a local wave vect
describes the labyrinths well~in both variational and nonva
riational systems!.

In the limit of N→`, the Newell-Pomeau field withN
independent modes is Gaussian, since the random func
w(r ) in Eq. ~1! is the sum of a large number of independe
contributions. In their original model Newell and Pome
assumed equal amplitudesuAj u5uAu and equal wave num
berskj5kc , but ageneralizedNewell-Pomeau crystal with
independent random amplitudesuAj u and random wave num
berskj distributed aroundkc is also Gaussian. Inr space, a
Gaussian crystal looks like a sort of modulated labyrin
@Fig. 1~a!# ~to the eye the appearance is actually independ
of the statistics of theuAj u as soon asN*20!. For the Gauss-
ian case the one-point momentsM2n5^w2n(r )&/s2n, where
s25^w2(r )&5(1/2N)( j

2NuAj
2u, are given by the relations

M2n,g5~2n21!!!, ~12!

where (2n21)!! 5(2n)!/(2nn!).
The moments for a texture are noticeably different. Us

Eq. ~11!, and assumingA5uAueif0, where the random phas
f0 is supposed to be uniformly distributed in@0, 2p# in order
to ensure the spatial stationarity of the pattern, the binom
relation

w~r !2n5uA2nu (
p51,n

Cp
2nei ~2n22p!@f~r !1f0#

leads to

M2n5
~2n21!!!

n!
, ~13!

which is considerably smaller than the Gaussian moments
reported on a logarithmic scale in Fig. 2~a!.

The relation~13! neglects the effects of harmonics an
defects of the texture. When the harmonics become imp
tant, the structures get stiff walls. In the limit of squa
waves,w(r )56wmax, thenM2n,stiff51, as for the flat solu-
tion.

Numerically, then dependence ofM2n for labyrinths and
domains of rolls in the SH or DOPO model@Fig. 2~a!# is
close to Eq.~13!. Very close to the modulational instabilit
thresholda in,mod the moments for domains of rolls~crosses!
are slightly larger than the pure cos@f(r )1f0# case, Eq.
~13!, probably due to the presence of many defects in
transient pattern obtained in a very large aspect ratio sys
As the control parameter is increased, the moments~full
circles! decrease below the pure cos@f(r )1f0# case, a sig-
nature of the increasing nonlinearities. The discrepancy
tween the moments for labyrinth and relation~13! increases
with n. However in the case of the quintic SH equation~4!,
high order moments agree well with Eq.~13!. Therefore our
results point to a small effect of disclinations, or superpo
tion of rolls with different orientations.

The probability distribution can be derived from th
moments appearing in the expansion of the character
function
3-3
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Fw~u!5^eiuw&5( ~2us!2nM2n

1

~2n!!
. ~14!

Fw(u)5J0(us/A2), whereJ0 is the zero-order Bessel func
tion; the probability distribution is the Fourier transform
the probability distribution

pw~w!}~wmax
2 2w2!21/2, ~15!

with pw(w)50 for uwu.wmax, i.e., a U curve as shown fo
the labyrinth case in Fig. 2~b!. The relation~15! may also be
obtained directly from Eq.~11!, sincepw(w) is the probabil-
ity distribution of the variablew5cosy wherey is uniform
in the range@0, 2p#.

Let us now consider the two-point moments, i.e., the c
relation function and the spatial spectrum ofw(r ) which
gives information about the spatial correlation effects.

FIG. 2. ~a! MomentsM2n , as a function of 2n. Dotted line for
the Gaussian case@Eq. ~12!#, solid line for Eq.~13!, crosses for Fig.
1~b!, circles for Fig. 1~c!. ~b! Probability distribution of the real par
of the signal fielda1 for Fig. 1~c!.
02620
r-

s

written above the spatial spectrumgw(k) of generalized
Newell-Pomeau turbulent crystals and of textures~with av-
erage domain size much smaller than the system size! dis-
plays no preferred direction since it appears like a pow
sprinkled around a ring of radiuskc , as illustrated in Fig.
1~d! for labyrinths. The circular average ofgw(k) over k
orientations provides a structure factorSw(k), whose width
is inversely proportional to the average domain size in
case of a texture. As shown in Fig. 3~a!, the structure factor
of labyrinths exhibits a thick peak~dotted line!, and a long
tail toward small wave numbers, different from the case
domains of stripes~solid line!. Therefore the shape of th
structure factor reflects the appearance of a texture. Sur
ingly, Gaussian crystals look the same whatever the width
the structure factor is.

The correlation function Gw(r1r 8,r 8)5^w(r
1r 8)w(r 8)& depends onr 5ur u for a stationary random func

FIG. 3. ~a! Structure factor for the DOPO case; left and rig
correspond toa1 and a1

2, respectively, of Fig. 1~c!, and center to
Fig. 1~b!. Thek shift between the two left curves is a consequen
of the ‘‘nonlinear resonance effect’’@25#. ~b! Spatial spectrumw2

for a generalized Newell-Pomeau turbulent crystal having the s
structure factorSlab(k) as the labyrinth in Fig. 1~c! ~N5800,uAj u
5ASlab(kj ) and independent random phasef j .
3-4
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EXAMPLE OF A CHAOTIC CRYSTAL: THE LABYRINTH PHYSICAL REVIEW E66, 026203 ~2002!
tion with rotational symmetry. In the case of textures co
posed of many small size domains, Eq.~11! leads to

Gw~r !5^w~r !w~0!&

5uA2u$^exp@ ik~r !•r #&1c.c.%. ~16!

With k5(k,uk) and r5(r ,u r), Eq. ~16! becomes

Gw~r !5
uA2u
2p E E dk dukk

3exp@ ikr cos~uk2u r !p~k,uk!#1c.c.

or

Gw~r !}E dk kJ0~kr !Sw~k!, ~17!

assuming that the probability distribution ofk is p(k,uk)
}Sw(k). Note that Eq.~17! is also valid for a Gaussian crys
tal since Eq. ~1! leads to ^w(r )w(0)&
5 limN→`(1/2N)S^uAj u2 exp(ik j•r )&.

The circularly averaged correlation functions of the p
terns shown in Figs. 1~b! and 1~c! are drawn in Fig. 4~a!. The
role of the finite width of the structure factor is to change t
long range behavior ofGw(r ). For a Dirac-like structure fac
tor, the oscillations ofGw(r )5J0(kr) are slowly damped
over several correlation lengths, the successive maxima
creasing asGmax(r);r21/2. This is illustrated in the top curve
of Fig. 4~b!. In contrast, in the case of a finite width structu
factor, the successive maxima decrease faster. For exam
when the structure factor is a meromorphic function w
poles in the complex plane, the residue theorem leads t
exponential decrease of the maxima@21#, as observed in Fig
4~b! for domains of rolls and labyrinths.

The difference between labyrinths and turbulent crys
appears through the higher order momenta. For the Gaus
case

Gw
p
2~r !5^wg

2~r1r 8!wg
2~r 8!&52Gwg

2 ~r !1s4, ~18!

whose Fourier transform is gw2(k)52gw(k)* gw(k)
1s4d(k), where * stands for convolution. Therefore th
spatial spectrum ofwg

2 contains componentsin the whole
diskwith radius smaller than 2kc , as illustrated in Fig. 3~b!.
In contrast, for a texture, Eq.~9! leads to

Gw2~r !5$uAu4^exp@2ik~r !•r #&1c.c.%1s4, ~19!

where^exp@2ik(r )•r #&}*dk J0(kr)kSw(k/2). Then the spa-
tial spectrum ofw2 contains a bright spot in the center, and
powderlike ring of radius 2kc , as observed for labyrinth
@Fig. 3~a!, right curve#.

The moments^w(r1r 8)w3(r 8)& also differ. For the
Gaussian case,^wg(r1r 8)wg

3(r 8)&53s2Gwg
(r ), while for a

labyrinth the numerical data exactly fit the relation

^w~r1r 8!w3~r 8!&5
3

2
s2Gw~r !, ~20!
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which agrees with a texture description, Eq.~11!.
We have shown that a local wave vector can be defi

almost everywhere for a labyrinth. Therefore a labyrinth c
be described as a texture, but in the short range order li
since the orientation of the local wave vector changes ov
distance as short as the spatial period. Although labyrin
differ markedly from Newell-Pomeau crystals in which a
infinite number of wave vectors contributes to the struct
at each pointr , they are chaotic crystals as well as the Gau
ian crystals, in the sense that the two structures have s
coherence length and a powderlike spectrum.

IV. TRANSITION FROM ROLLS TO LABYRINTHS

In the preceding section we have examined the proper
of chaotic structures, labyrinths, that are both homogene

FIG. 4. Circularly averaged correlation function for Figs. 1~b!
and 1~c! of the DOPO;r is scaled in order that the maxima coin
cide. ~a! G(r )/G(0) for the labyrinths~solid line! and domains of
rolls ~dashed line!. ~b! Height of the successive maxima: top curv
for J0(r ), middle curve for domains of rolls, and bottom curve f
labyrinths.
3-5
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on average and random at short scale. They are found a
final state of the evolution of equations like the SH a
DOPO equations. The same equations for the same pa
eter values also have a periodic roll solution as the final st
This shows that the final state depends on the initial con
tions. In thermodynamics, for the same range of parame
~temperature, for instance! one may observe a thermody
namically stable and a metastable state. Here, to de
which is which, we took inspiration from thermodynami
where unless special conditions are met, the ‘‘stable’’ st
tends to invade the ‘‘metastable’’ one. We have tried to
the same in our models, with the help of a numerical te
The results are reported below.

The numerical test was first probed on the SH variatio
model where the relative stability of the solutions is know
from the calculation of energy density~per unit area! F. In
Fig. 5~a! the energy densityF roll of the parallel roll pattern is
drawn versus the wave number, and compared with the
ergy densityF lab of various labyrinthine patterns obtaine
from different initial conditions@22#. The roll pattern with
optimal wave number is shown@Fig. 5~b!# to be more stable
than the labyrinth in the whole domain where the latter
ists. In this range the energy for rolls is 4–10 % lower th
for labyrinths. Labyrinths disappear atm55.7 where the ho-
mogeneous state becomes more stable than rolls.

It would be interesting to know if this property~lower
energy for rolls than for labyrinths! is just an accident of this
model, or due to the fact that we are looking at two dime
sions, etc. Therefore we have also compared the energy
sities for two other variational models, Eqs.~4! and~5!, ~6!.

For Eq. ~4!, similar results~not reported here! are ob-
tained with the added complexity of an unstable const
solution.

In the case of Eqs.~5!, ~6!, again parallel rolls are more
stable than labyrinths. Forr«>7, and m'0.1 the energy
difference between them may be as small as 3%, whic
larger than the fluctuations of the final values ofF lab when
changing the initial conditions~they are smaller than 1%!.

The numerical test that was first used@24# to decide which
structure~rolls or labyrinths! is the preferred state was th
following: We looked at the evolution of an initial patter
filled with stripes on one half, and with a labyrinth on th
other half. For Eqs.~2!, ~4!, ~5!, and~6! the rolls~more stable
than labyrinths as stated above! partially invade the labyrinth
part. But this test may be biased due to the periodic bound
conditions. For example, when the grid size is exactly eq
to an integer number of wavelengths, the roll componen
essentially frozen. In order to get rid of the boundary pro
lem, we present here another numerical test: We look at
evolution of a droplet of rolls inside a labyrinthine sea.

For the SH model, the droplet grows, Figs. 6~a! and 6~b!.
The evolution was quantified by a study of the tempo
evolution of the angular distribution of the spatial spectru
S(qk)5*dkuw(k,qk)u2 drawn in Fig. 7~a!. The area oc-
cuped by parallel rolls is proportional toSmax(qk) which in-
creases and then oscillates as shown in the upper curv
Fig. 7~b!.

For the DOPO case, Eqs.~9!, ~10!, which has no obvious
formulation in terms of a relaxing functional for the param
02620
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eter values we consider here@23#, the droplet also expand
close to the threshold, but it shrinks fora0,in>a0,labas shown
in Figs. 6~c! and 6~d!. In the latter case the quantitySmax(qk)
decreases and then oscillates as shown in the lower curv
Fig. 7~b!. Consequently, in the DOPO system, there is e
dence of a transition from rolls to labyrinths as the mo
stable final state. Whena0,in is increased further, the laby
rinth destabilizes into a flat planform, as in the SH case.

V. CONCLUSION

Up to now a Newell-Pomeau turbulent crystal defined
Eq. ~1!, as a linear superposition of many Fourier modes,
never been observed as a stable two-dimensional pat
without sustained external noise. Seemingly such a struc
can hardly survive the nonlinear selection stage at leas

FIG. 5. Comparison of the energy densityF for parallel rolls and
labyrinths.~a! F(k) for Eqs. ~5!, ~6!, er 55, m50.1, q251.5. ~b!
Energy F/F rolls(m) for parallel rolls ~with optimal wave vector!,
labyrinths, and constant solution for Eq.~2!. The more stable state
corresponds to the upper curve, becauseF,0.
3-6
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EXAMPLE OF A CHAOTIC CRYSTAL: THE LABYRINTH PHYSICAL REVIEW E66, 026203 ~2002!
low space dimension. In this paper we have analyzed
kinds of chaotic structure with short range positional ord
and a powderlike spatial spectrum, the turbulent crystal
the labyrinth. For labyrinths, unlike the turbulent crystal,
single wave vector may be defined locally almost eve
where. Thus a labyrinth is a limit case of a texture with
coherence length comparable to the wavelength.

In the various models studied here, although the evolu
of the pattern looks the same, a bifurcation from rolls
labyrinths is clearly shown in the DOPO model only, whe
a droplet of rolls first expands and then shrinks at increas
values of the control parameter. In contrast, in the th
variational models, rolls are more stable than labyrin
whatever the control parameter might be. However, e
very close to the threshold, domains of rolls do not evo
toward parallel rolls, as recently shown@26#, due to the pin-
ning of the grain boundaries in an effective periodic poten
induced by the periodicity of the stripe pattern itself.

The general question of the spatial structure of grou
states of given systems does not yet have a well unders
answer. Our numerical studies seem to exclude the poss
ity of chaotic ground states for the simple variational mod
we looked at, although the energy difference between
labyrinthine state and the rolls may be quite small. But ot
gradient models may well have chaotic ground states. F
the point of view of order in crystals, Landau proposed lo
ago considering crystals as generated by coupled den
waves, which is theoretically close to the kind of models

FIG. 6. Evolution of a droplet of rolls inside a labyrinthine se
~a!, ~b! Patterns att50 and 0.93105 for the SH Eq.~2!, m51.6,
with a 2563256 grid, and eight points per wavelength.~c!, ~d!
Patterns att50 and 23105 in units of the cavity photon lifetime
t/(12R) for the DOPO case,a0,in50.030, with a 5123512 grid,
and 16 points per signal wavelength~eight points for the pump
field!.
02620
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look at. This idea of a ground state described by wea
interacting modulation waves is believed to be a fair appro
mation for some liquid crystals, for instance. At the mome
we are actively looking at the possibility of chaotic groun
state in space dimension 3 where the simple approach
Newell-Pomeau does not apply~the unit sphere in the mo
mentum space cannot be tiled uniformly with regular po
hedra with an arbitrarily large number of vertices!.

ACKNOWLEDGMENTS

The numerical work was done at the computer center
the CNRS~IDRIS! and at the computer center of Paris-S
University ~CRI!. We thank IDRIS and CRI for their help
Paul Manneville is warmly thanked for very helpful discu
sions.

FIG. 7. ~a! Angular distribution of the spatial spectrum for th
patterns of Figs. 6~a! ~dotted line! and 6~b! ~solid line!. ~b! Time
evolution of Smax(qk) for the patterns of Figs. 6~a!–6~d!; upper
curve for the SH equation and lower curve for the DOPO c
beyond the bifurcation to labyrinths.
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