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Example of a chaotic crystal: The labyrinth
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Labyrinthine structures often appear as the final steady state of pattern forming systems. Being disordered,
they exhibit the same kind of short range positional order as the Newell-Pomeau turbulent crystal. Labyrinths
can be seen as a limit case of the texture of disordered rolls with a coherence length of the same order as the
wavelength. In the various two-dimensional model equations we looked at, labyrinths and parallel rolls are
steady states for the same parameters, their occurrence depending on the initial conditions. Comparing the
stability of these two structures, we find that in variational models their energy is very close, rolls always being
more stable than labyrinths. For the nonvariational model we propose a numerical experiment which displays
a well defined bifurcation from parallel rolls to labyrinths as the more stable state.
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[. INTRODUCTION knowledge, no turbulent crystal has been reported as the final
stage of evolution of a system without external sustained
In nature, as in artificial systems, there is a wide variety ofnoise.

stationary patterns, from perfectly well ordered crystals or Below we study another case of two-dimensional chaotic
nonequilibrium patterns like Rayleigh-Bard rolls and state, the labyrinthgFig. 1(c)], which also display short
Benard-Marangoni hexagons, to stationary “chaotic” struc-range order and a powderlike spectriifig. 1(d)]. Labyrin-
tures without long range order like glasses for instance. Théhine structures have been observed in many situations, as in
present paper is devoted to one particular instance of “pat-
tern forming” equations that show both regular rolls and cha- pae-
otic patterns as the final steady state. We attempt to underis S8

scarcity of hard analytical results on “chaotic” patterns. An
early work by Newell and Pomedu] discussed the possi-
bility of a chaotic ground state at threshold involving a large EFS3S
number of modes, namedtarbulent crystal They proposed
a gradient system model whose ground state is

1 N
w(r)= —E A expik;-r, (1)
Nij=1

where [kj|~k., Aj=|A|exp(¢;) with independent random
phasesp; uniformly distributed in{0, 27}. Such a structure £
displays chaotic behavior and short range positional orde
[see Fig. 18)]. The modes are distributed in Fourier space {
like the spatial spectrum of a polycrystalline sample resulting(\!
from grinding of a crystalline material into a powder, as in :
Fig. 1(d). =N 55
On the other hand, chaotic structures which are spatiall@ =

stationary on average have been observed below the instabigy . : )
ity threshold in the presence of a continuous n¢Be or as
a fluctuating “quantum imagel3] due to quantum noise. FIG. 1. () Newell-Pomeau turbulent crystal) Domains of

They are also commonly observed in numerical simulationsolis in the transient statéc) Stable labyrinths(d) Spatial spectrum
above threshold, when starting from random initial condi-of (c). (b)—(d) correspond to the DOPO case, E(®.and(10), with
tions, in the linear stage before the nonlinearity comes inta grid of 1024< 1024 points, and 16 points per critical signal wave-
play and brings the system to its final state. To the best of ouength.
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magnetic filmg 4], in chemical reactionfb], and in vibrated tion exists for u>1, which is modulationally unstable for
sand[6]. Labyrinths also appear from random initial condi- ©<1.5. The energy density for a surfakeis
tions as solutions of the forced Ginzburg-Landau equation L . .
[7], of reaction-diffusion model§8], and of optical models _ B 4 2 A2 12
[9,10], always without external noise. While these chaotic Fiw}= ngr[— W W E{(V 1w
states are formed in many situations, no statistical approach 3
has been proposed to account for their properties, and the
bifurcation leading to labyrinths has not been considered. In numerical simulations of Ed2), starting from random
There is even some confusion concerning their definitionjnitial conditions, it seems at first that the final states exhibit
labyrinths being sometimes named rdii4,12. a continuous transition from rolls to labyrinths @asncreases
From now on the labeiurbulent crystalwill be restricted  from zero. Indeed the patterns obtained at a given time have
to the structures predicted by Newell and Pomjgtescribed — an increasing number of defects; they are composed of do-
by Eg. (1) with large N], labyrinthsto structures as in Fig. mains of rolls with decreasing size, which become frozen for
1(c) already reported in the literature, aodaotic crystalso ~ ©=1.5, looking like an ensemble of portions of a single
any structure without long range order, but spatially statisticurved roll or labyrinth. All these structurésither domains
cally homogeneous. of rolls or labyrinthg display a powerlike spatial Fourier
A statistical approach is first used to characterize the labyspectrum around the critical circlgualitatively as in Fig.
rinths, and we point out to what extent they are like or notl(d)]. The labyrinths disappear fe=5.7 to the benefit of
like the Newell-Pomeau turbulent crystals. Four differentthe constant solutiorfeventually with localized structures
model equations are considered that display similar featurdg.1]).
when starting from random initial conditions. Rolls are = We have also considered two other variational models, the
formed at the threshold of instability, followed by labyrinths quintic SH equation
as the control parameter increases. On the other hand, for ) 5 3 5
parameter values where labyrinths appear, using parallel rolls A= uA—(V+1)"A+A°—0.254%, 4

as initial conditions, stable rolls remain forever. Our secondChosen because of its subcritical character. and also a svstem
aim is to find if a bifurcation rolls-labyrinths exists in these k Y

systems, i.e., if the labyrinth becomes the “ground state"cF))]c twol[clc]mpled SH equations inspired by Newell and
above a certain threshold. omeay L,

For th_e three velriational T(_)dels considered h_ere, i.e., of aw=uw— (V2+1)2w—w3—2reuw— y, w5,  (5)
type g,w= — 6F/Sw* wherew* is the complex conjugate of
w if wis complex, the ground state is the one minimizing the du=— €2u—(V2+q?)2u—rew?— y,ul. (6)

Euler-Lagrange functiondF(w,w*), also named the “po-
tential” or “energy.” In these cases, rolls are found to be Referencg1] suggests an Euler-Lagrange functional for an
more stable than labyrinths, the energy density of the twactive mode(w), coupled to a set of passive modas,),
structures becoming closer and closer as the control parargach with appropriate parameters, (e, ,r,,), which could
eter increases. In contrast, in the model of the degeneratead to a ground state of a turbulent crystal with a large
optical parametric oscillatoDOPO), without variational number of modes. We investigate a model with a single pas-
structure, a numerical experiment shows a clear bifurcatiogive mode. For small values of the coupling coefficieat
from rolls to labyrinths as the “preferred” pattern. where a weakly nonlinear analysis has been performed, the
The four model equations for our study are presented ifmodel in Egs.(5), (6) cannot lead to a chaotic ground state
Sec. Il. In Sec. Ill the labyrinths are shown to be mainly[13]. But for large coupling e=5), this model displays
described in terms of a single local wave vector. This makesubcritical rolls and labyrinths.
them differ sharply from the Newell-Pomeau turbulent crys-  Finally, we study a nonvariational model for the DOPO
tals involving locally an infinite number of Fourier modes. In with the y(® crystal filling the whole length of a ring cavity.
Sec. lll we compare the stability of rolls and Iabyrinths in the For the values of the parameters used below, it has been
four model equations. shown[10,14] that diffraction and nonlinearities can be de-
coupled. Therefore the complex amplitudes(t,r,z) of the
pump and signal fields obey the following boundary condi-
tions which couple the fields at the cell entranee-Q) and
The simplest model considered here is the gradient-typexit (z=1):
Swift-Hohenberg SH) equation for the real valued order pa- o
rameterw(r,t), ag(t+7,0)= ag i+ RE DTV 20g (),

Il. MODEL EQUATIONS

Jw= pw— (V2+1)2w—w?, ) ay(t+ 7,00 =RtV %oq (1,0). 9

In Egs. (9) the transverser dependence has been
whereV?= 9%+ J; is the Laplacian ang the control param-  dropped. 7 is the round trip time of the light inside the
eter. The zero solution destabilizes @t,,;=0 into a roll  cavity, ag;, is the input pump amplitudéaken as control
pattern with wave numbetf=1. A nontrivial constant solu- parameter, ¢ is the cell lengthR is the total reflectivity of
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the plane mirrorsf, ; are the cavity mistunings for the two form[20]. As shown below, the notion of a local wave vector
fields, andk, the longitudinal wave number, all real quanti- describes the labyrinths welin both variational and nonva-
ties. The field amplitudesxyq(t,€) at the exit of the riational systemys

x?-type medium are approximated by a second order ex- In the limit of N—, the Newell-Pomeau field witiN

pansion: independent modes is Gaussian, since the random function
w(r) in Eqg. (1) is the sum of a large number of independent
ao(€)=ag(0)+i€a?(0)—€?ag(0)|a?(0)], contributions. In their original model Newell and Pomeau
assumed equal amplitudés;|=|A| and equal wave num-
) =a(0)+ilan(0)a* (0 10 bersk;=k., but ageneralizedNewell-Pomeau crystal with
1t)=a1(0) ®0(0)e1(0) (19 independent random amplitudes;| and random wave num-
(2 bersk; distributed around is also Gaussian. In space, a
+7a1(0)[|a6(0)|—|a§(0)|], Gaussian crystal looks like a sort of modulated labyrinth

[Fig. 1(a)] (to the eye the appearance is actually independent
of the statistics of th¢A;| as soon adl=20). For the Gauss-
when the variablest(r) inside the parentheses are dropped.jan case the one-point momenis,,=(w?"(r))/o?", where
We used the parameter valuBs=0.9, 6,=26,=0.2. For 02:<w2(r)):(1/2N)E]-2N|A]-2|, are given by the relations
agin=0.0226 a signal field emerges with an unstable wave
numberk, given by the relatiork?¢/ky=/6;. With random Mo g=(2n—1)!1, (12)
initial conditions, when increasing the control parameter, the
transverse profile of the signal fieldither the real part or the where (h—1)!!=(2n)!/(2"n!).
imaginary part ofa;) has the same appearance as the solu- The moments for a texture are noticeably different. Using
tions of the SH equatiof®), i.e., domains of rolls are formed EQq.(11), and assumingl=|.4|e' %o, where the random phase
close to thresholdcf. Fig. 1(b) for aq;,=0.0245 and then ¢ is supposed to be uniformly distributed[i®, 27] in order
labyrinths [Fig. 1(c), a(;,=0.030 until the homogeneous to ensure the spatial stationarity of the pattern, the binomial
solution emergesd j,=0.032). relation

Il. STATISTICAL PROPERTIES OF LABYRINTHS W(r)zn: |A2n| Z anei(zn*ZP)[tﬁ(rH(Zﬁo]
p=1n

The Newell-Pomeau turbulent crystal, Figaj clearly
differs from the structures shown in Figsibl—1(c), while  |eads to
they all display similar spectra. As the three structures are
chaotic, it is natural to use a statistical approach to help to (2n—21)1
understand the differences between them. The ensemble av- MZn:T’ (13
erages noted below by angular brackets are numerically com-
puted by spatial averaging. We show here that labyrinths arghich is considerably smaller than the Gaussian moments, as
locally periodic solutions, i.etextures in the limit of short  reported on a logarithmic scale in Fig(a2
range positional order. A texture can be written as The relation(13) neglects the effects of harmonics and
defects of the texture. When the harmonics become impor-
w(r)~Aexpi¢(r)+c.c~Aexpik(r)-r+c.c., (11) tant, the structures get stiff walls. In the limit of square
waves,w(r)=*Wnyay, thenM,, =1, as for the flat solu-
with a local wave vectok(r)=V ¢(r), and an amplituded  tion.
supposed to vary slowly with respect to the phase. Many Numerically, then dependence d¥1,, for labyrinths and
works have studied textures, since they appear preferentialjomains of rolls in the SH or DOPO modgFig. 2(@)] is
to rolls in convection boxe§l5]. These studies were per- close to Eq.(13). Very close to the modulational instability
formed under the hypothes®k<k?, which allows deriva-  thresholda;, moq the moments for domains of rollgrosses
tion of an equation for the local wave vectofr), since the are slightly larger than the pure ¢ggr)+ ¢4] case, Eq.
behavior ofk near singularities of the phase field6] is  (13), probably due to the presence of many defects in our
algebraically slaved to the wave numbderThe relative sta- transient pattern obtained in a very large aspect ratio system.
bility of these complex structures with respect to regularAs the control parameter is increased, the momenit
ones has been discussed by Crds4. circles decrease below the pure g@ér) + ¢,] case, a sig-
Labyrinths can certainly not be described as roll domainsature of the increasing nonlinearities. The discrepancy be-
with a slowly varying amplitude and orientation, because theween the moments for labyrinth and relatitB) increases
local orientation of the nodal lines of the field changes withwith n. However in the case of the quintic SH equatidn,
a typical length scale of the order of the wavelength, so thahigh order moments agree well with E4.3). Therefore our
they are fundamentally disordered. However, one can defineesults point to a small effect of disclinations, or superposi-
a field of wave vector&(r) almost everywhere. To know the tion of rolls with different orientations.
local orientation and magnitude k{r), one can either draw The probability distribution can be derived from the
the curves orthogonal to the nodal lines and then interpolateioments appearing in the expansion of the characteristic
at each point of the grifl18,19, or use a local Fourier trans- function
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FIG. 2. (8 MomentsM,,, as a function of &. Dotted line for
the Gaussian cas&q. (12)], solid line for Eq.(13), crosses for Fig.
1(b), circles for Fig. 1c). (b) Probability distribution of the real part
of the signal fielda, for Fig. 1(c).

) 1
<I>W<u):<e'“W>=2<—uo)2“M2nW. (14)

@, (u)=Jo(ua’/\/2), wherel, is the zero-order Bessel func-

tion; the probability distribution is the Fourier transform of
the probability distribution

Pw(W) o (Wh 5~ w?) 2, (15)

with p,, (W) =0 for |w|>W,,., i.e, @a U curve as shown for
the labyrinth case in Fig.(B). The relation(15) may also be
obtained directly from Eq(11), sincep,,(w) is the probabil-
ity distribution of the variablev=cosy wherey is uniform
in the ranggO0, 27].
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FIG. 3. (@) Structure factor for the DOPO case; left and right
correspond tax; and ai, respectively, of Fig. ), and center to
Fig. 1(b). Thek shift between the two left curves is a consequence
of the “nonlinear resonance effecf25]. (b) Spatial spectrunw?
for a generalized Newell-Pomeau turbulent crystal having the same
structure factorS,,(k) as the labyrinth in Fig. () (N=800]A]

=vSan(Kj) and independent random phagg.

written above the spatial spectrum,(k) of generalized
Newell-Pomeau turbulent crystals and of textuf@gh av-
erage domain size much smaller than the system) siize
plays no preferred direction since it appears like a powder
sprinkled around a ring of radius., as illustrated in Fig.
1(d) for labyrinths. The circular average of, (k) over k
orientations provides a structure fac®(k), whose width

is inversely proportional to the average domain size in the
case of a texture. As shown in Fig(a® the structure factor

of labyrinths exhibits a thick peatdotted ling, and a long

tail toward small wave numbers, different from the case of
domains of stripegsolid line). Therefore the shape of the
structure factor reflects the appearance of a texture. Surpris-
ingly, Gaussian crystals look the same whatever the width of

Let us now consider the two-point moments, i.e., the corthe structure factor is.

relation function and the spatial spectrum w{r) which

The correlation function T, (r+r’,r")y=(w(r

gives information about the spatial correlation effects. As+r’)w(r’)) depends om=[r| for a stationary random func-
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tion with rotational symmetry. In the case of textures com- 1 - T T
posed of many small size domains, Efjl) leads to
Ly(r)=(w(r)w(0)) [ 1
=] A%|{(exdik(r)-r])+c.c}. (16)
0.5H i
With k= (k,6,) andr=(r,6,), Eq.(16) becomes §
|42 Sl
Fw(r):ﬁ dk deo,k =
x ex{ikr cog 6, — 6,)p(k, 6,)]+c.c. or
or |
L | N
FW(r)ocf dk kg (kr)S,(k), a7 0 100 200
(@) 1 [a.u]
assuming that the probability distribution &fis p(k,6,) o8
. . . T I T I T l T | T
«S,(k). Note that Eq(17) is also valid for a Gaussian crys-
tal since Eq. (1) leads to  (w(r)w(0)) < t -
=limy_(1/2N)Z(| A exp(k; - 1)). 3 a
The circularly averaged correlation functions of the pat- "3-0.5— ® . .
terns shown in Figs.(b) and Xc) are drawn in Fig. @). The 2 st,
role of the finite width of the structure factor is to change the =~ T ®n - 4a L, . T
long range behavior df ,(r). For a Dirac-like structure fac- E, e = Laa,, Aa.
tor, the oscillations ofl’,(r)=Jo(kr) are slowly damped < -I[F o« "& T
over several correlation lengths, the successive maxima d% . ®a
creasing a§ (1) ~r 2 This is illustrated in the top curve « [ o " . I
of Fig. 4(b). In contrast, in the case of a finite width structure 4 sk ° . ]
factor, the successive maxima decrease faster. For examplug o ° L
when the structure factor is a meromorphic function with | ) . ]
poles in the complex plane, the residue theorem leads to a * .
exponential decrease of the maxif2d], as observed in Fig. 2 . I . I L e | . I .
4(b) for domains of rolls and labyrinths. 0 50 100 150 200 250
The difference between labyrinths and turbulent crystals  (v) r [a.u.]
appears through the higher order momenta. For the Gaussian
case FIG. 4. Circularly averaged correlation function for Figgb)l

and 1c) of the DOPO;r is scaled in order that the maxima coin-

FWZ(r)=(W§(r+r’)wé(r’)>=21“3v (r)+o¢* (18  cide.(@ I'(r)/T(0) for the labyrinths(solid line) and domains of
P 9 rolls (dashed ling (b) Height of the successive maxima: top curve
for Jo(r), middle curve for domains of rolls, and bottom curve for

whose Fourier transform is yy.2(K) =2y, (K)* 7 (k) labyrinths

+o*8(k), where* stands for convolution. Therefore the
spatial spectrum of/vg contains components the whole | hich agrees with a texture description, Egl).
diskwith radius smaller thank,, as illustrated in Fig. ®). We have shown that a local wave vector can be defined
In contrast, for a texture, Eq9) leads to almost everywhere for a labyrinth. Therefore a labyrinth can
. be described as a texture, but in the short range order limit,
Tua(r) ={| Al (exf 2ik(r)-r]) +c.c}+ o, (19 since the orientation of the local wave vector changes over a
distance as short as the spatial period. Although labyrinths
differ markedly from Newell-Pomeau crystals in which an
infinite number of wave vectors contributes to the structure
at each point, they are chaotic crystals as well as the Gauss-
ian crystals, in the sense that the two structures have small
coherence length and a powderlike spectrum.

where(exg 2ik(r) - r]ye fdk Jo(kr)kS,(k/2). Then the spa-
tial spectrum ofv? contains a bright spot in the center, and a
powderlike ring of radius R., as observed for labyrinths
[Fig. (&), right curve.

The moments{w(r+r")w3(r’)) also differ. For the
Gau;sian cascéwg(rfr’)wg(r’)>=3az.l“w (r), While for a
labyrinth the numerical data exactly fit the relation V. TRANSITION FROM ROLLS TO LABYRINTHS

WA ) = = o2 In the' preceding section we have examined the properties
(wlr+riw(r’) 27 Tu(n), 20 of chaotic structures, labyrinths, that are both homogeneous
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on average and random at short scale. They are found as tr -0.96 y T - T - T - T T T
final state of the evolution of equations like the SH and
DOPO equations. The same equations for the same paran - Fiay .
eter values also have a periodic roll solution as the final state
This shows that the final state depends on the initial condi- - /7
tions. In thermodynamics, for the same range of parameter: N /
(temperature, for instanteone may observe a thermody- AN ’
namically stable and a metastable state. Here, to decid; N s
which is which, we took inspiration from thermodynamics o R4
where unless special conditions are met, the “stable” state 104 ~- -

tends to invade the “metastable” one. We have tried to do F

the same in our models, with the help of a numerical test.

The results are reported below.

The numerical test was first probed on the SH variational -1.08
model where the relative stability of the solutions is known
from the calculation of energy densitper unit areaF. In . I . L . L . L . L
Fig. 5(a) the energy densit ., of the parallel roll pattern is 0.85 09 0.95 ! 105 11
drawn versus the wave number, and compared with the eng) k
ergy densityF,, of various labyrinthine patterns obtained
from different initial conditions[22]. The roll pattern with
optimal wave number is showjirig. 5(b)] to be more stable
than the labyrinth in the whole domain where the latter ex- - .
ists. In this range the energy for rolls is 4—10 % lower than
for labyrinths. Labyrinths disappear at=5.7 where the ho-
mogeneous state becomes more stable than rolls. -

It would be interesting to know if this propertifower = ———
energy for rolls than for labyrinthss just an accident of this &e - - i
model, or due to the fact that we are looking at two dimen- labyrinths
sions, etc. Therefore we have also compared the energy det
sities for two other variational models, Edd) and(5), (6).

For Eq. (4), similar results(not reported hepeare ob-
tained with the added complexity of an unstable constant L constant solution 1
solution. 3

In the case of Eqs5), (6), again parallel rolls are more
stable than labyrinths. Fare=7, and u~0.1 the energy 0 1 2 3 4 5 6 7
difference between them may be as small as 3%, which isy, M
larger than the fluctuations of the final valueskf, when
changing the initial conditiong&hey are smaller than 1% FIG. 5. Comparison of the energy dendiyor parallel rolls and

The numerical test that was first ugedl] to decide which  labyrinths.(a) F(k) for Egs.(5), (6), er=5, u=0.1, g>=1.5. (b)
structure(rolls or labyrinthg is the preferred state was the Energy F/F (1) for parallel rolls (with optimal wave vectog
following: We looked at the evolution of an initial pattern labyrinths, and constant solution for E@). The more stable state
filled with stripes on one half, and with a labyrinth on the corresponds to the upper curve, becakise0.
other half. For Eqs(2), (4), (5), and(6) the rolls(more stable
than labyrinths as stated abgyrtially invade the labyrinth ~ eter values we consider hef23], the droplet also expands
part. But this test may be biased due to the periodic boundarglose to the threshold, but it shrinks f@p ;= a 1. as shown
conditions. For example, when the grid size is exactly equain Figs. 6c) and d). In the latter case the quantiS,a,(J)
to an integer number of wavelengths, the roll component islecreases and then oscillates as shown in the lower curve of
essentially frozen. In order to get rid of the boundary prob-Fig. 7(b). Consequently, in the DOPO system, there is evi-
lem, we present here another numerical test: We look at thédence of a transition from rolls to labyrinths as the more
evolution of a droplet of rolls inside a labyrinthine sea. stable final state. Wheny, is increased further, the laby-

For the SH model, the droplet grows, Figg¢a)eand gb).  rinth destabilizes into a flat planform, as in the SH case.

The evolution was quantified by a study of the temporal
evolution of the angular distribution of the spatial spectrum
S(9) = fdklw(k,9,)|? drawn in Fig. 7a). The area oc-

1~ rolls i —

08| 4

V. CONCLUSION

cuped by parallel rolls is proportional @y,,(J) which in- Up to now a Newell-Pomeau turbulent crystal defined by
creases and then oscillates as shown in the upper curve &f. (1), as a linear superposition of many Fourier modes, has
Fig. 7(b). never been observed as a stable two-dimensional pattern,

For the DOPO case, Eq®), (10), which has no obvious without sustained external noise. Seemingly such a structure
formulation in terms of a relaxing functional for the param- can hardly survive the nonlinear selection stage at least in
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FIG. 6. Evolution of a droplet of rolls inside a labyrinthine sea.
(@), (b) Patterns at=0 and 0.% 10° for the SH Eq.(2), ©=1.6, - ” T
with a 256x 256 grid, and eight points per wavelengtlc), (d) < oo
Patterns at=0 and 2<10° in units of the cavity photon lifetime & % T 7]
7/(1—R) for the DOPO casegg;,=0.030, with a 51X512 grid, 2
and 16 points per signal wavelengtaight points for the pump i i
field). " ;
0.02 Y 7 4
Yop fl
low space dimension. In this paper we have analyzed twc - A R .
kinds of chaotic structure with short range positional order
and a powderlike spatial spectrum, the turbulent crystal anc ~ 001,———————+——+—1———

the labyrinth. For labyrinths, unlike the turbulent crystal, a
single wave vector may be defined locally almost every- ®)
where. Thus a labyrinth is a limit case of a texture with a
coherence length comparable to the wavelength.

log,, (©

FIG. 7. (a) Angular distribution of the spatial spectrum for the

- - . _patterns of Figs. @ (dotted ling and Gb) (solid line). (b) Time
In the various models studied here, although the evolutlorivolution of S,..(9,) for the patterns of Figs. @—6(d); upper

of th_e pat'Fern looks the Same, a bifurcation from rolls tocurve for the SH equation and lower curve for the DOPO case
labyrinths is clearly shown in the DOPO model only, wherebeyond the bifurcation to labyrinths.

a droplet of rolls first expands and then shrinks at increasing

values of the control parameter. In contrast, in the thre K at. This id ¢ d state d ibed b K
variational models, rolls are more stable than labyrinth ook at. This 1dea of a ground state described by weakly
Jnteracting modulation waves is believed to be a fair approxi-

whatever the control parameter might be. However, eve tion f liquid tals. for inst At th i
very close to the threshold, domains of rolls do not evolyeg1ation for Some liquid crystals, for instance. € momen

toward parallel rolls, as recently sho®6], due to the pin- we are actively I(_)oking_ at the possibility Qf chaotic ground

ning of the grain boundaries in an effective periodic potentialsl\ltate lllnpspace d(ljmensmlt‘n 3 where tf:e srllmplg aﬁ]proach of

induced by the periodicity of the stripe pattern itself. ewell-Pomeau does not applhe unit sphere in the mo-
The general question of the spatial structure of groun entum space cannot be tiled uniformly with regular poly-

states of given systems does not yet have a well understo dra with an arbitrarily large number of vertiges

answer. Our numerical studies seem to exclude the possibil-

ity of chaotic ground states for the S|mple variational models ACKNOWLEDGMENTS

we looked at, although the energy difference between the

labyrinthine state and the rolls may be quite small. But other The numerical work was done at the computer center of
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